Penerapan Algoritma Multiclass Ensemble Support Vector Machine dengan Fungsi Kernel untuk Klasifikasi Human Activity

Penulis

  • Firman Aziz Universitas Pancasakti
  • Syahrul Usman Universitas Pancasakti
  • Jeffry Universitas Pancasakti
  • Nur Ayu Asrhi Universitas Pancasakti
  • M Rezky Armansyah Universitas Pancasakti

DOI:

https://doi.org/10.54914/jit.v8i2.579

Kata Kunci:

Klasifikasi, Multiclass Ensemble SVM, Physical Activity, Sensor, Smartphone

Abstrak

Human Activity Recognition adalah teknologi yang memperkenalkan gerakan tubuh manusia menggunakan accelerometer, giroskop, global positioning system, dan kamera. Awal munculnya metode support vector machine digunakan untuk mengklasifikasi 2 kelas, sehingga diperlukan pengembangan untuk mengatasi permasalahan multikelas dan banyaknya dataset yang berskala besar mengakibatkan kinerja menjadi tidak optimal. Tujuan kertas ini adalah menerapkan metode ensemble Support Vector Machine dalam mengklasifikasikan gerakan berjalan, berlari, dan naik tangga berdasarkan sensor accelerometer dan gyroscope pada smartphone. Serta melihat kinerja metode ensemble Support Vector Machine ketika menggunakan kernel linear dan RBF. Hasil akurasi Support Vector Machine kernel linear sebesar 79.66% dan mengalami peningkatan sebesar 88.01% setelah menggunakan ensemble. Sedangkan akurasi untuk Support Vector Machine kernel RBF sebesar 79.51 dan mengalami peningkatan sebesar 88.04% setelah menggunakan ensemble.

Unduhan

Data unduhan belum tersedia.

Referensi

A. Syahrani, D. Putra, A. R.-J. T. Informatika, and undefined 2021, “GPS-Based Tracking In Armaps: The Effect of Degree Slant Smartphone to Display Augmented Reality Objects,†jutif.if.unsoed.ac.id, vol. 2, no. 1, pp. 43–49, 2021, doi: 10.20884/1.jutif.2021.2.1.45.

A. Alruban, H. Alobaidi, N. L. preprint arXiv:2201.08688, and undefined 2022, “Physical Activity Recognition By Utilising Smartphone Sensor Signals,†arxiv.org, Accessed: Jul. 05, 2022. [Online]. Available: https://arxiv.org/abs/2201.08688.

S. Ranakoti et al., “Human Fall Detection System Over IMU Sensors Using Triaxial Accelerometer,†Adv. Intell. Syst. Comput., vol. 798, pp. 495–507, 2019, doi: 10.1007/978-981-13-1132-1_39.

J. Chaochuan et al., “Human Activity Recognition using Support Vector Machine for Automatic Security System,†iopscience.iop.org, doi: 10.1088/1742-6596/1192/1/012017.

D. James, J. Lee, and K. Wheeler, “Introduction To Wearable Sensors,†SpringerBriefs Appl. Sci. Technol., pp. 1–6, 2019, doi: 10.1007/978-981-13-3777-2_1.

L. Chen and C. D. Nugent, “Sensor-Based Activity Recognition Review,†Hum. Act. Recognit. Behav. Anal., pp. 23–47, 2019, doi: 10.1007/978-3-030-19408-6_2.

L. Cao, Y. Wang, Q. Jin, J. M.-2017 I. C. on, and undefined 2017, “Actirecognizer: Design and Implementation of A Real-Time Human Activity Recognition System,†ieeexplore.ieee.org, Accessed: Jun. 15, 2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8250368/.

A. Dogan, D. B.-E. S. with Applications, and undefined 2021, “Machine Learning and Data Mining in Manufacturing,†Elsevier, Accessed: Jul. 05, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S095741742030823X.

D. Z.-F. of image data mining and undefined 2019, “Wavelet transform,†Springer, Accessed: Jul. 05, 2022. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-17989-2_3.

S. Kaghyan, … H. S.-J. of I. M. and A., and undefined 2012, “Activity Recognition Using K-Nearest Neighbor Algorithm On Smartphone With Tri-Axial Accelerometer,†foibg.com, Accessed: Jun. 15, 2022. [Online]. Available: http://www.foibg.com/ijima/vol01/ijima01-2-f.pdf#page=46.

D. Anguita, A. Ghio, … L. O.-P. of the, and undefined 2013, “A Public Domain Dataset For Human Activity Recognition Using Smartphones,†upcommons.upc.edu, Accessed: Jun. 15, 2022. [Online]. Available: https://upcommons.upc.edu/handle/2117/20897.

M. Zubair, K. Song, C. Y.-2016 I. International, and undefined 2016, “Human Activity Recognition Using Wearable Accelerometer Sensors,†ieeexplore.ieee.org, Accessed: Jun. 15, 2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7804737/.

J. Wannenburg, R. M.-I. T. on Systems, and undefined 2016, “Physical Activity Recognition From Smartphone Accelerometer Data For User Context Awareness Sensing,†ieeexplore.ieee.org, Accessed: Jun. 29, 2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7476869/.

Y. J. Rakesh, R. Kavitha, J. J.-I. D. E. and, and undefined 2021, “Human activity recognition using wearable sensors,†Springer, Accessed: Jun. 29, 2022. [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-15-5679-1_51.

N. Hardiyanti, A. Lawi, Diaraya, and F. Aziz, “Classification of Human Activity based on Sensor Accelerometer and Gyroscope Using Ensemble SVM method,†Proc. - 2nd East Indones. Conf. Comput. Inf. Technol. Internet Things Ind. EIConCIT 2018, pp. 304–307, Nov. 2018, doi: 10.1109/EICONCIT.2018.8878627.

A. Lawi, F. Aziz, and S. L. Wungo, “Increasing accuracy of classification physical activity based on smartphone using ensemble logistic regression with boosting method,†J. Phys. Conf. Ser., vol. 1341, no. 4, p. 042002, Oct. 2019, doi: 10.1088/1742-6596/1341/4/042002.

A. Lawi, F. Aziz, and S. Syarif, “Ensemble GradientBoost for increasing classification accuracy of credit scoring,†Proc. 2017 4th Int. Conf. Comput. Appl. Inf. Process. Technol. CAIPT 2017, vol. 2018-January, pp. 1–4, Mar. 2018, doi: 10.1109/CAIPT.2017.8320700.

F. A.-J. of S. and C. E. (JSCE) and undefined 2021, “Klasifikasi Aktivitas Manusia menggunakan metode Ensemble Stacking berbasis Smartphone,†journal.unpacti.ac.id, vol. 1, no. 2, p. 53, 2021, Accessed: Jun. 15, 2022. [Online]. Available: http://journal.unpacti.ac.id/index.php/JSCE/article/view/171.

F. Aziz, S. Usman, J. J.-J. M. INFORMATIKA, and undefined 2021, “Klasifikasi Physical Activity Berbasis Sensor Accelorometer, Gyroscope, dan Gravity menggunakan Algoritma Multi-class Ensemble GradientBoost,†stmik-budidarma.ac.id, Accessed: Jul. 05, 2022. [Online]. Available: http://stmik-budidarma.ac.id/ejurnal/index.php/mib/article/view/3222.

F. Aziz, "Klasifikasi Physical Activity Berbasis Sensor Accelorometer, Gyroscope dan Gravity Menggunakan Algoritma Multi-Class Ensemble Gradientboost," 2021.

Unduhan

Diterbitkan

04-10-2022

Cara Mengutip

Aziz, F., Usman, S., Jeffry, J., Asrhi, N. A., & Armansyah, M. R. (2022). Penerapan Algoritma Multiclass Ensemble Support Vector Machine dengan Fungsi Kernel untuk Klasifikasi Human Activity. Jurnal Informatika Terpadu, 8(2), 127–131. https://doi.org/10.54914/jit.v8i2.579

Terbitan

Bagian

Artikel