PENENTUAN PENERIMA BERAS RASKIN DI KELURAHAN OESAPA BARAT MENGGUNAKAN METODE K-NEAREST NEIGHBOR (KNN)

Penulis

  • yampi kaesmetan

Abstrak

Rapid technological developments are currently very influential in all areas of work especially in the field ofmapping the location on maps online. Village of West Oesapa, District Kelapa Lima, Kupang is one of thevillages that aspires for the welfare of the community by way of distribution of poor rice aid to the poor in theeconomic field. Raskin rice distribution should be shared equitably and meets the criteria as a poor ricerecipient in the Village of West Oesapa. With KNN method (K-Nearest Neighbor) will count how many people ineach neighborhood would receive help poor rice in accordance with existing criteria, and to determine thepercentage can be seen in the form of a map.

Unduhan

Data unduhan belum tersedia.

Referensi

Kusrini dan Luthfi, M. 2009. Algoritma Data

Mining. Yogyakarta : Penerbit Andi

Offset.

Kusumadewi, S.2009. Klasifikasi Status Gizi

Menggunakan Naïve Bayesian

Classification. Yogyakarta. Universitas

Islam Indonesia.

Sutabri, T. 2004. Analisa Sistem Informasi

Yogyakarta : Penerbit Andi.

Hasan, I. 2012. Penerapa Algoritma K-Nearest

Neighbor Untuk Prediksi Potensi Calon

Kreditur Di XYZ Finance. Universitas

Negeri Gorontalo.

Darliani R. N. Kebijakan Program Perindustrian

Beras Miskin Dalam Upaya

Menanggulangi Kemiskinan Dan

Meningkatkan Ketahanan Pangan.

Fakultas Ekonomi. Universitas Sultan

Agung Triyatsa. Vol 14

Diterbitkan

2017-01-24

Cara Mengutip

kaesmetan, yampi. (2017). PENENTUAN PENERIMA BERAS RASKIN DI KELURAHAN OESAPA BARAT MENGGUNAKAN METODE K-NEAREST NEIGHBOR (KNN). Jurnal Teknologi Terpadu, 2(2). Diambil dari https://journal.nurulfikri.ac.id/index.php/jtt/article/view/54

Terbitan

Bagian

Artikel