PENENTUAN PENERIMA BERAS RASKIN DI KELURAHAN OESAPA BARAT MENGGUNAKAN METODE K-NEAREST NEIGHBOR (KNN)

Penulis

  • yampi kaesmetan

DOI:

https://doi.org/10.54914/jtt.v2i2.54

Abstrak

Rapid technological developments are currently very influential in all areas of work especially in the field of
mapping the location on maps online. Village of West Oesapa, District Kelapa Lima, Kupang is one of the
villages that aspires for the welfare of the community by way of distribution of poor rice aid to the poor in the
economic field. Raskin rice distribution should be shared equitably and meets the criteria as a poor rice
recipient in the Village of West Oesapa. With KNN method (K-Nearest Neighbor) will count how many people in
each neighborhood would receive help poor rice in accordance with existing criteria, and to determine the
percentage can be seen in the form of a map.

Unduhan

Data unduhan belum tersedia.

Referensi

Kusrini dan Luthfi, M. 2009. Algoritma Data

Mining. Yogyakarta : Penerbit Andi

Offset.

Kusumadewi, S.2009. Klasifikasi Status Gizi

Menggunakan Naïve Bayesian

Classification. Yogyakarta. Universitas

Islam Indonesia.

Sutabri, T. 2004. Analisa Sistem Informasi

Yogyakarta : Penerbit Andi.

Hasan, I. 2012. Penerapa Algoritma K-Nearest

Neighbor Untuk Prediksi Potensi Calon

Kreditur Di XYZ Finance. Universitas

Negeri Gorontalo.

Darliani R. N. Kebijakan Program Perindustrian

Beras Miskin Dalam Upaya

Menanggulangi Kemiskinan Dan

Meningkatkan Ketahanan Pangan.

Fakultas Ekonomi. Universitas Sultan

Agung Triyatsa. Vol 14

Unduhan

Diterbitkan

2017-01-24

Cara Mengutip

[1]
yampi kaesmetan, “PENENTUAN PENERIMA BERAS RASKIN DI KELURAHAN OESAPA BARAT MENGGUNAKAN METODE K-NEAREST NEIGHBOR (KNN)”, j. teknologi terpadu, vol. 2, no. 2, Jan 2017.

Terbitan

Bagian

Artikel

Artikel paling banyak dibaca berdasarkan penulis yang sama