PENENTUAN PENERIMA BERAS RASKIN DI KELURAHAN OESAPA BARAT MENGGUNAKAN METODE K-NEAREST NEIGHBOR (KNN)
DOI:
https://doi.org/10.54914/jtt.v2i2.54Abstrak
Rapid technological developments are currently very influential in all areas of work especially in the field of
mapping the location on maps online. Village of West Oesapa, District Kelapa Lima, Kupang is one of the
villages that aspires for the welfare of the community by way of distribution of poor rice aid to the poor in the
economic field. Raskin rice distribution should be shared equitably and meets the criteria as a poor rice
recipient in the Village of West Oesapa. With KNN method (K-Nearest Neighbor) will count how many people in
each neighborhood would receive help poor rice in accordance with existing criteria, and to determine the
percentage can be seen in the form of a map.
Unduhan
Referensi
Kusrini dan Luthfi, M. 2009. Algoritma Data
Mining. Yogyakarta : Penerbit Andi
Offset.
Kusumadewi, S.2009. Klasifikasi Status Gizi
Menggunakan Naïve Bayesian
Classification. Yogyakarta. Universitas
Islam Indonesia.
Sutabri, T. 2004. Analisa Sistem Informasi
Yogyakarta : Penerbit Andi.
Hasan, I. 2012. Penerapa Algoritma K-Nearest
Neighbor Untuk Prediksi Potensi Calon
Kreditur Di XYZ Finance. Universitas
Negeri Gorontalo.
Darliani R. N. Kebijakan Program Perindustrian
Beras Miskin Dalam Upaya
Menanggulangi Kemiskinan Dan
Meningkatkan Ketahanan Pangan.
Fakultas Ekonomi. Universitas Sultan
Agung Triyatsa. Vol 14
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2017 yampi kaesmetan
Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.